Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Antimicrob Resist Infect Control ; 12(1): 38, 2023 04 21.
Article in English | MEDLINE | ID: covidwho-2305355

ABSTRACT

BACKGROUND: We sought to decipher transmission pathways in healthcare-associated infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within our hospital by epidemiological work-up and complementary whole genome sequencing (WGS). We report the findings of the four largest epidemiologic clusters of SARS-CoV-2 transmission occurring during the second wave of the pandemic from 11/2020 to 12/2020. METHODS: At the University Hospital Basel, Switzerland, systematic outbreak investigation is initiated at detection of any nosocomial case of SARS-CoV-2 infection, as confirmed by polymerase chain reaction, occurring more than five days after admission. Clusters of nosocomial infections, defined as the detection of at least two positive patients and/or healthcare workers (HCWs) within one week with an epidemiological link, were further investigated by WGS on respective strains. RESULTS: The four epidemiologic clusters included 40 patients and 60 HCWs. Sequencing data was available for 70% of all involved cases (28 patients and 42 HCWs), confirmed epidemiologically suspected in house transmission in 33 cases (47.1% of sequenced cases) and excluded transmission in the remaining 37 cases (52.9%). Among cases with identical strains, epidemiologic work-up suggested transmission mainly through a ward-based exposure (24/33, 72.7%), more commonly affecting HCWs (16/24, 66.7%) than patients (8/24, 33.3%), followed by transmission between patients (6/33, 18.2%), and among HCWs and patients (3/33, 9.1%, respectively two HCWs and one patient). CONCLUSIONS: Phylogenetic analyses revealed important insights into transmission pathways supporting less than 50% of epidemiologically suspected SARS-CoV-2 transmissions. The remainder of cases most likely reflect community-acquired infection randomly detected by outbreak investigation. Notably, most transmissions occurred between HCWs, possibly indicating lower perception of the risk of infection during contacts among HCWs.


Subject(s)
COVID-19 , Cross Infection , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Phylogeny , Disease Outbreaks , Cross Infection/epidemiology , Tertiary Care Centers
3.
Swiss Med Wkly ; 153: 40040, 2023 02 20.
Article in English | MEDLINE | ID: covidwho-2266874

ABSTRACT

AIMS OF THE STUDY: Globally, since the introduction of conjugate-vaccines against encapsulated bacteria, respiratory viruses have caused most hospitalisations for community-acquired pneumonia. The aim of this study was to describe pathogens detected and their association with clinical findings in Switzerland. METHODS: Baseline data were analysed for all trial participants enrolled between September 2018 and September 2020 into the KIDS-STEP Trial, a randomised controlled superiority trial on the effect of betamethasone on clinical stabilisation of children admitted with community-acquired pneumonia. Data included clinical presentation, antibiotic use and results of pathogen detection. In addition to routine sampling, nasopharyngeal specimens were analysed for respiratory pathogens using a panel polymerase chain reaction test covering 18 viral and 4 bacterial pathogens. RESULTS: 138 children with a median age of 3 years were enrolled at the eight trial sites. Fever (obligatory for enrolment) had been present for median 5 days before admission. Most common symptoms were reduced activity (129, 93.5%) and reduced oral intake (108, 78.3%). Oxygen saturation <92% was found in 43 (31.2%). Forty-three participants (29.0%) were already on antibiotic treatment prior to admission and 104 participants (75.4%) received antibiotic treatment on admission. Pathogen testing results were available from 132 children: 31 (23.5%) had respiratory syncytial virus detected, 21 (15.9%) human metapneumovirus. The pathogens detected showed expected seasonal and age preponderance and were not associated with chest X-ray findings. CONCLUSIONS: In the context of the predominantly viral pathogens detected, the majority of antibiotic treatment is probably unnecessary. The ongoing trial, as well as other studies, will be able to provide comparative pathogen detection data to compare pre- and post-COVID-19-pandemic settings.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia , Child , Humans , Child, Preschool , Child, Hospitalized , Switzerland , Hospitalization , Community-Acquired Infections/drug therapy
5.
Sci Transl Med ; : eabn7979, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2233623

ABSTRACT

Genome sequences from evolving infectious pathogens allow quantification of case introductions and local transmission dynamics. We sequenced 11,357 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from Switzerland in 2020 - the sixth largest effort globally. Using a representative subset of these data, we estimated viral introductions to Switzerland and their persistence over the course of 2020. We contrasted these estimates with simple null models representing the absence of certain public health measures. We show that Switzerland's border closures de-coupled case introductions from incidence in neighboring countries. Under a simple model, we estimate an 86-98% reduction in introductions during Switzerland's strictest border closures. Furthermore, the Swiss 2020 partial lockdown roughly halved the time for sampled introductions to die out. Last, we quantified local transmission dynamics once introductions into Switzerland occurred, using a phylodynamic model. We found that transmission slowed 35-63% upon outbreak detection in summer 2020, but not in fall. This finding may indicate successful contact tracing over summer before overburdening in fall. The study highlights the added value of genome sequencing data for understanding transmission dynamics.

6.
Microbiol Spectr ; 10(4): e0200622, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1986342

ABSTRACT

Rapid antigen tests (RATs) are widely used for point-of-care or self-testing to identify SARS-CoV-2 (SCoV2), but currently circulating Omicron variants may impair detection. In this study, we prospectively evaluated the Roche-SARS-CoV-2-Antigen and Acon-FlowFlex-SARS-CoV-2-Antigen in 150 consecutively collected nasopharyngeal patient swabs (50 SCoV2 RNA undetectable; 100 SCoV2 Omicron BA.1). Omicron BA.1 results were compared to 92 Ct-matched early-pandemic SCoV2 variants (B.1.160 and B.1.177), to 100 Omicron BA.2 positive and to 100 Omicron BA.5 positive samples. For Omicron BA.1, Roche-SARS-CoV-2-Antigen detected 87% of samples having Ct-values <29 reflecting 3.6% lower rates compared to B.1.160 and B.1.177. Acon-FlowFlex-SARS-CoV-2-Antigen was less affected and detected 90% of Omicron BA.1 with Ct-values <29. Omicron BA.2 and BA.5 detection rates were significantly reduced by 20% and 10%, respectively, for the Roche-SARS-CoV-2-Antigen in samples with Ct-values <29 but remained similar for Acon-FlowFlex-SARS-CoV-2-Antigen. RATs need to be continuously evaluated as new SCoV2-variants emerge. Spreading of Omicron-BA.2, and the recently emerged Omicron BA.5 variant, may not only result from escape from postvaccine or postinfection immunity, but also from false-negative RATs misguiding point-of-care and self-testing decisions at times of restricted molecular testing. IMPORTANCE Antigen tests are widely used for rapid identification of SCoV2-positive cases and their increased risk of transmission. At present, there are several FDA- and CE-cleared tests available in North America and Europe. However, their diagnostic performance has been evaluated with early-pandemic variants. This study provides evidence that variation within the nucleocapsid protein as seen in recently emerged and now globally spreading Omicron BA.2 and BA.5 variants significantly impairs detection rates of widely used antigen tests. Consequently, antigen tests need to be reevaluated when new pandemic SCoV2 variants emerge and start to predominate globally.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Nucleocapsid Proteins/genetics , Pandemics , SARS-CoV-2/genetics
7.
PLoS Pathog ; 18(5): e1010515, 2022 05.
Article in English | MEDLINE | ID: covidwho-1875097

ABSTRACT

Worldwide outbreaks of enterovirus D68 (EV-D68) in 2014 and 2016 have caused serious respiratory and neurological disease. We collected samples from several European countries during the 2018 outbreak and determined 53 near full-length genome ('whole genome') sequences. These sequences were combined with 718 whole genome and 1,987 VP1-gene publicly available sequences. In 2018, circulating strains clustered into multiple subgroups in the B3 and A2 subclades, with different phylogenetic origins. Clusters in subclade B3 emerged from strains circulating primarily in the US and Europe in 2016, though some had deeper roots linking to Asian strains, while clusters in A2 traced back to strains detected in East Asia in 2015-2016. In 2018, all sequences from the USA formed a distinct subgroup, containing only three non-US samples. Alongside the varied origins of seasonal strains, we found that diversification of these variants begins up to 18 months prior to the first diagnostic detection during a EV-D68 season. EV-D68 displays strong signs of continuous antigenic evolution and all 2018 A2 strains had novel patterns in the putative neutralizing epitopes in the BC- and DE-loops. The pattern in the BC-loop of the USA B3 subgroup had not been detected on that continent before. Patients with EV-D68 in subclade A2 were significantly older than patients with a B3 subclade virus. In contrast to other subclades, the age distribution of A2 is distinctly bimodal and was found primarily among children and in the elderly. We hypothesize that EV-D68's rapid evolution of surface proteins, extensive diversity, and high rate of geographic mixing could be explained by substantial reinfection of adults. Better understanding of evolution and immunity across diverse viral pathogens, including EV-D68 and SARS-CoV-2, is critical to pandemic preparedness in the future.


Subject(s)
COVID-19 , Enterovirus D, Human , Enterovirus Infections , Respiratory Tract Infections , Adult , Aged , Child , Demography , Disease Outbreaks , Enterovirus D, Human/genetics , Enterovirus Infections/epidemiology , Humans , Phylogeny , SARS-CoV-2
8.
EMBO Rep ; 23(7): e53956, 2022 07 05.
Article in English | MEDLINE | ID: covidwho-1847847

ABSTRACT

To investigate the class-dependent properties of anti-viral IgM antibodies, we use membrane antigen capture activated cell sorting to isolate spike-protein-specific B cells from donors recently infected with SARS-CoV-2, allowing production of recombinant antibodies. We isolate 20, spike-protein-specific antibodies of classes IgM, IgG, and IgA, none of which shows any antigen-independent binding to human cells. Two antibodies of class IgM mediate virus neutralization at picomolar concentrations, but this potency is lost following artificial switch to IgG. Although, as expected, the IgG versions of the antibodies appear to have lower avidity than their IgM parents, this is not sufficient to explain the loss of potency.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Viral , Humans , Immunoglobulin G , Immunoglobulin M
9.
Microorganisms ; 10(5)2022 Apr 21.
Article in English | MEDLINE | ID: covidwho-1834846

ABSTRACT

(1) Background: Some COVID-19 vaccine recipients show breakthrough infection. It remains unknown, which factors contribute to risks and severe outcomes. Our aim was to identify risk factors for SCoV2 breakthrough infections in fully vaccinated individuals. (2) Methods: We conducted a retrospective case-control study from 28 December 2020 to 25 October 2021. Data of all patients with breakthrough infection was compared to data of all vaccine recipients in the Canton of Basel-City, Switzerland. Further, breakthrough infections by Alpha- and Delta-variants were compared. (3) Results: Only 0.39% (488/126,586) of all vaccine recipients suffered from a breakthrough infection during the observational period, whereof most cases were asymptomatic or mild (97.2%). Breakthrough infections after full vaccination occurred in the median after 78 days (IQR 47-123.5). Factors with lower odds for breakthrough infection were age (OR 0.987) and previous COVID-19 infection prior to vaccination (OR 0.296). Factors with higher odds for breakthrough infection included vaccination with Pfizer/BioNTech instead of Moderna (OR 1.459), chronic disease (OR 2.109), and healthcare workers (OR 1.404). (4) Conclusions: Breakthrough infections are rare and mild but can occur early after vaccination. This implies that booster vaccination might be initiated earlier, especially for risk groups. Due to new variants emerging repeatedly, continuous monitoring of breakthrough infections is crucial.

10.
Clin Infect Dis ; 2022 May 06.
Article in English | MEDLINE | ID: covidwho-1831050

ABSTRACT

BACKGROUND: Vaccination may control the COVID-19 pandemic, including in nursing homes where many high-risk people live. We conducted extensive outbreak investigations. METHODS: We studied an outbreak at a nursing home in Switzerland where vaccination uptake of mRNA vaccines against SARS-CoV-2 was 82% among residents as of Jan 21/2021. After a vaccinated symptomatic HCW was diagnosed with COVID-19 on Feb 22, we did an outbreak investigations in house A (47 residents, 37 HCWs) using SARS-CoV-2-specific PCR in nasopharyngeal swabs. We performed whole-genome sequencing of SARS-CoV-2 and serological analyses. RESULTS: We identified 17 individuals with positive PCR tests; ten residents (five vaccinated) and seven HCWs (three vaccinated). Median age among residents was 86 years (interquartile range [IQR] 70-90) and 49 years (IQR 29-59) among HCWs. Among the five vaccinated residents, 60% had mild disease and had 40% no symptoms, whereas all five unvaccinated residents had mild to severe disease and two died. The vaccine effectiveness for the prevention of infection among the residents was 73.0% (95% Cl 24.7-90.1). The 12 available genomes were all alpha variants. Neutralizing titers were significantly higher in vaccinated individuals upon re-exposure (>1 week after diagnosis) than in vaccinated, unexposed HCWs (p=0.012). Transmission networks indicated four likely or possible transmissions from vaccinated to other individuals, and 12 transmission events from unvaccinated individuals. CONCLUSIONS: COVID-19 outbreaks can occur in nursing homes, including transmission from vaccinated persons to others. Outbreaks might occur silently, underlining the need for continued testing and basic infection control measures in these high-risk settings.

11.
Virus Evol ; 8(1): veac002, 2022.
Article in English | MEDLINE | ID: covidwho-1746220

ABSTRACT

Transmission chains within small urban areas (accommodating ∼30 per cent of the European population) greatly contribute to case burden and economic impact during the ongoing coronavirus pandemic and should be a focus for preventive measures to achieve containment. Here, at very high spatio-temporal resolution, we analysed determinants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in a European urban area, Basel-City (Switzerland). We combined detailed epidemiological, intra-city mobility and socio-economic data sets with whole-genome sequencing during the first SARS-CoV-2 wave. For this, we succeeded in sequencing 44 per cent of all reported cases from Basel-City and performed phylogenetic clustering and compartmental modelling based on the dominating viral variant (B.1-C15324T; 60 per cent of cases) to identify drivers and patterns of transmission. Based on these results we simulated vaccination scenarios and corresponding healthcare system burden (intensive care unit (ICU) occupancy). Transmissions were driven by socio-economically weaker and highly mobile population groups with mostly cryptic transmissions which lacked genetic and identifiable epidemiological links. Amongst more senior population transmission was clustered. Simulated vaccination scenarios assuming 60-90 per cent transmission reduction and 70-90 per cent reduction of severe cases showed that prioritising mobile, socio-economically weaker populations for vaccination would effectively reduce case numbers. However, long-term ICU occupation would also be effectively reduced if senior population groups were prioritised, provided there were no changes in testing and prevention strategies. Reducing SARS-CoV-2 transmission through vaccination strongly depends on the efficacy of the deployed vaccine. A combined strategy of protecting risk groups by extensive testing coupled with vaccination of the drivers of transmission (i.e. highly mobile groups) would be most effective at reducing the spread of SARS-CoV-2 within an urban area.

12.
Swiss Med Wkly ; 151: w30120, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1687293

ABSTRACT

The new SARS-CoV-2 Omicron variant (B.1.1.529) has been recently declared a Variant of Concern due to a series of important mutations in the viral spike protein and especially in the receptor-binding domain. While investigations into the spread of this new variant are ongoing, the first cases have been detected in Switzerland. Important questions have been raised: (1) Will the PCR assays commonly used to detect SARS-CoV-2 still work for the Omicron variant? (2) Can specific PCR features, e.g. S-gene dropout, be used to identify potential Omicron samples? In this minireview we provide current knowledge on the Omicron variant and guidance on its PCR validation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , Polymerase Chain Reaction
13.
Microorganisms ; 9(12)2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1572565

ABSTRACT

During COVID19 pandemic, SARS-CoV-2 rapid antigen tests (RATs) were marketed with minimal or no performance data. We aimed at closing this gap by determining technical sensitivities and specificities of 30 RATs prior to market release. We developed a standardized technical validation protocol and assessed 30 RATs across four diagnostic laboratories. RATs were tested in parallel using the Standard Q® (SD Biosensor/Roche) assay as internal reference. We used left-over universal transport/optimum media from nasopharyngeal swabs of 200 SARS-CoV-2 PCR-negative and 100 PCR-positive tested patients. Transport media was mixed with assay buffer and applied to RATs according to manufacturer instructions. Sensitivities were determined according to viral loads. Specificity of at least 99% and sensitivity of 95%, 90%, and 80% had to be reached for 107, 106, 105 virus copies/mL, respectively. Sensitivities ranged from 43.5% to 98.6%, 62.3% to 100%, and 66.7% to 100% at 105, 106, 107 copies/mL, respectively. Automated assay readers such as ExDia or LumiraDx showed higher performances. Specificities ranged from 88.8% to 100%. Only 15 of 30 (50%) RATs passed our technical validation. Due to the high failure rate of 50%, mainly caused by lack of sensitivity, we recommend a thorough validation of RATs prior to market release.

14.
J Clin Microbiol ; 59(12): e0138121, 2021 11 18.
Article in English | MEDLINE | ID: covidwho-1522904

ABSTRACT

Commercially available SARS-CoV-2-directed antibody assays may assist in diagnosing past exposure to SARS-CoV-2 antigens. We cross-compared the following eight immunoassays detecting antibodies against SARS-CoV-2 nucleocapsid (N) or spike (S) antigens in three cohorts consisting of 859 samples from 622 patients: (#1) EDI novel coronavirus COVID-19 (Epitope), (#2) RecomWell SARS-CoV-2 (Mikrogen), (#3) COVID-19 ELISA (VirCell), (#4) Elecsys anti-SARS-CoV-2 N (Roche), (#5) Liaison SARS-CoV-2 S1/S2 (DiaSorin), (#6) anti-SARS-CoV-2 ELISA (EuroImmun), (#7) Elecsys anti-SARS-CoV-2 S (Roche), and (#8) Liaison SARS-CoV-2 TrimericS (DiaSorin). In cross-sectional cohort 1 (68 sera from 38 patients with documented SARS-CoV-2 infection), agreement between assays #1 to #6 ranged from 75% to 93%, whereby discordance mostly resulted from N-based assays #1 to #4. In cross-sectional cohort 2 (510 sera from 510 patients; 56 documented, 454 unknown SARS-CoV-2 infection), assays #4 to #6 were analyzed further together with assays #7 and #8, revealing 94% concordance (44 [9%] positives and 485 [85%] negatives). Discordance was highest within 2 weeks after SARS-CoV-2/COVID-19 diagnosis and confirmed in the longitudinal cohort 3 (281 sera from 74 COVID-19 patients), using assays #4, #6, #7, and #8. Subanalysis of 20 (27%) initially seronegative cohort 3 patients revealed assay-dependent 50% and 90% seroconversion rates after 8 to 11 days and 14 to 18 days, respectively. Increasing SARS-CoV-2 antibodies were significantly associated with declining levels of viral loads, lactate dehydrogenase, interleukin-6, and C-reactive protein and preceded clearance of SARS-CoV-2 detection in the upper respiratory tract by approximately 1 week. SARS-CoV-2-specific antibody assays show substantial agreement, but interpretation of qualitative and semiquantitative results depends on the time elapsed postdiagnosis and the choice of viral antigen. Mounting of systemic SARS-CoV-2-specific antibodies may predict recovery from viral injury and clearance of mucosal replication.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19 Testing , Cross-Sectional Studies , Humans , Immunoassay , Immunoglobulin G , Laboratories , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus
15.
Front Immunol ; 12: 765330, 2021.
Article in English | MEDLINE | ID: covidwho-1518489

ABSTRACT

AIMS: Although the exact factors promoting disease progression in COVID-19 are not fully elucidated, unregulated activation of the complement system (CS) seems to play a crucial role in the pathogenesis of acute lung injury (ALI) induced by SARS-CoV-2. In particular, the lectin pathway (LP) has been implicated in previous autopsy studies. The primary purpose of our study is to investigate the role of the CS in hospitalized COVID-19 patients with varying degrees of disease severity. METHODS: In a single-center prospective observational study, 154 hospitalized patients with PCR-confirmed SARS-CoV-2 infection were included. Serum samples on admission to the COVID-19 ward were collected for analysis of CS pathway activities and concentrations of LP proteins [mannose-binding lectin (MBL) and ficolin-3 (FCN-3)] & C1 esterase inhibitor (C1IHN). The primary outcome was mechanical ventilation or in-hospital death. RESULTS: The patients were predominately male and had multiple comorbidities. ICU admission was required in 16% of the patients and death (3%) or mechanical ventilation occurred in 23 patients (15%). There was no significant difference in LP activity, MBL and FCN-3 concentrations according to different peak disease severities. The median alternative pathway (AP) activity was significantly lower (65%, IQR 50-94) in patients with death/invasive ventilation compared to patients without (87%, IQR 68-102, p=0.026). An optimal threshold of <65.5% for AP activity was derived from a ROC curve resulting in increased odds for death or mechanical ventilation (OR 4,93; 95% CI 1.70-14.33, p=0.003) even after adjustment for confounding factors. Classical pathway (CP) activity was slightly lower in patients with more severe disease (median 101% for death/mechanical ventilation vs 109%, p=0.014). C1INH concentration correlated positively with length of stay, inflammatory markers and disease severity on admission but not during follow-up. CONCLUSION: Our results point to an overactivated AP in critically ill COVID-19 patients in vivo leading to complement consumption and consequently to a significantly reduced AP activity in vitro. The LP does not seem to play a role in the progression to severe COVID-19. Apart from its acute phase reaction the significance of C1INH in COVID-19 requires further studies.


Subject(s)
COVID-19/immunology , Complement System Proteins/immunology , SARS-CoV-2 , Adult , Aged , COVID-19/blood , COVID-19/mortality , COVID-19/therapy , Complement C1 Inhibitor Protein/immunology , Critical Illness , Female , Hospital Mortality , Hospitalization , Humans , Lectins/immunology , Male , Middle Aged , Prospective Studies , Respiration, Artificial , Severity of Illness Index
16.
Swiss Med Wkly ; 151: w30057, 2021 08 30.
Article in English | MEDLINE | ID: covidwho-1403974

ABSTRACT

In anticipation of an interseasonal respiratory syncytial virus (RSV) epidemic, a clinician-led reporting system was rapidly established to capture RSV infections in Swiss hospitals, starting in January 2021. Here, we present details of the reporting system and first results to June 2021. An unusual epidemiology was observed with an interseasonal surge of RSV infections associated with COVID-19-related non-pharmacological interventions. These data allowed real-time adjustment of RSV prophylaxis guidelines and consequently underscore the need for and continuation of systematic nationwide RSV surveillance.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Humans , Infant , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , SARS-CoV-2 , Switzerland/epidemiology
17.
Epidemics ; 37: 100480, 2021 12.
Article in English | MEDLINE | ID: covidwho-1347598

ABSTRACT

BACKGROUND: In December 2020, the United Kingdom (UK) reported a SARS-CoV-2 Variant of Concern (VoC) which is now named B.1.1.7. Based on initial data from the UK and later data from other countries, this variant was estimated to have a transmission fitness advantage of around 40-80 % (Volz et al., 2021; Leung et al., 2021; Davies et al., 2021). AIM: This study aims to estimate the transmission fitness advantage and the effective reproductive number of B.1.1.7 through time based on data from Switzerland. METHODS: We generated whole genome sequences from 11.8 % of all confirmed SARS-CoV-2 cases in Switzerland between 14 December 2020 and 11 March 2021. Based on these data, we determine the daily frequency of the B.1.1.7 variant and quantify the variant's transmission fitness advantage on a national and a regional scale. RESULTS: We estimate B.1.1.7 had a transmission fitness advantage of 43-52 % compared to the other variants circulating in Switzerland during the study period. Further, we estimate B.1.1.7 had a reproductive number above 1 from 01 January 2021 until the end of the study period, compared to below 1 for the other variants. Specifically, we estimate the reproductive number for B.1.1.7 was 1.24 [1.07-1.41] from 01 January until 17 January 2021 and 1.18 [1.06-1.30] from 18 January until 01 March 2021 based on the whole genome sequencing data. From 10 March to 16 March 2021, once B.1.1.7 was dominant, we estimate the reproductive number was 1.14 [1.00-1.26] based on all confirmed cases. For reference, Switzerland applied more non-pharmaceutical interventions to combat SARS-CoV-2 on 18 January 2021 and lifted some measures again on 01 March 2021. CONCLUSION: The observed increase in B.1.1.7 frequency in Switzerland during the study period is as expected based on observations in the UK. In absolute numbers, B.1.1.7 increased exponentially with an estimated doubling time of around 2-3.5 weeks. To monitor the ongoing spread of B.1.1.7, our plots are available online.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Switzerland/epidemiology , United Kingdom
19.
Microorganisms ; 9(5)2021 May 19.
Article in English | MEDLINE | ID: covidwho-1234778

ABSTRACT

A variety of antiviral treatments for COVID-19 have been investigated, involving many repurposed drugs. Currently, the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp, encoded by nsp12-nsp7-nsp8) has been targeted by numerous inhibitors, e.g., remdesivir, the only provisionally approved treatment to-date, although the clinical impact of these interventions remains inconclusive. However, the potential emergence of antiviral resistance poses a threat to the efficacy of any successful therapies on a wide scale. Here, we propose a framework to monitor the emergence of antiviral resistance, and as a proof of concept, we address the interaction between RdRp and remdesivir. We show that SARS-CoV-2 RdRp is under purifying selection, that potential escape mutations are rare in circulating lineages, and that those mutations, where present, do not destabilise RdRp. In more than 56,000 viral genomes from 105 countries from the first pandemic wave, we found negative selective pressure affecting nsp12 (Tajima's D = -2.62), with potential antiviral escape mutations in only 0.3% of sequenced genomes. Potential escape mutations included known key residues, such as Nsp12:Val473 and Nsp12:Arg555. Of the potential escape mutations involved globally, in silico structural models found that they were unlikely to be associated with loss of stability in RdRp. No potential escape mutation was found in a local cohort of remdesivir treated patients. Collectively, these findings indicate that RdRp is a suitable drug target, and that remdesivir does not seem to exert high selective pressure. We anticipate our framework to be the starting point of a larger effort for a global monitoring of drug resistance throughout the COVID-19 pandemic.

20.
J Med Virol ; 93(4): 2374-2384, 2021 04.
Article in English | MEDLINE | ID: covidwho-1217387

ABSTRACT

OBJECTIVES: Detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is key to the clinical and epidemiological assessment of CoVID-19. We cross-validated manual and automated high-throughput testing for SARS-CoV-2-RNA, evaluated SARS-CoV-2 loads in nasopharyngeal-oropharyngeal swabs (NOPS), lower respiratory fluids, and plasma, and analyzed detection rates after lockdown and relaxation measures. METHODS: Basel-S-gene, Roche-E-gene, and Roche-cobas®6800-Target1 and Target2 were prospectively validated in 1344 NOPS submitted during the first pandemic peak (Week 13). Follow-up cohort (FUP) 1, 2, and 3 comprised 10,999, 10,147, and 19,389 NOPS submitted during a 10-week period until Weeks 23, 33, and 43, respectively. RESULTS: Concordant results were obtained in 1308 cases (97%), including 97 (9%) SARS-CoV-2-positives showing high quantitative correlations (Spearman's r > .95; p < .001) for all assays and high precision by Bland-Altman analysis. Discordant samples (N = 36, 3%) had significantly lower SARS-CoV-2 loads (p < .001). Following lockdown, detection rates declined to <1% in FUP-1, reducing single-test positive predictive values from 99.3% to 85.1%. Following relaxation, rates flared up to 4% and 12% in FUP-2 and -3, but infected patients were younger than during lockdown (34 vs. 52 years, p < .001). In 261 patients providing 936 NOPS, SARS-CoV-2 loads declined by three orders of magnitude within 10 days postdiagnosis (p < .001). SARS-CoV-2 loads in NOPS correlated with those in time-matched lower respiratory fluids or in plasma but remained detectable in some cases with negative follow-up NOPS, respectively. CONCLUSION: Manual and automated assays significantly correlated qualitatively and quantitatively. Following a successful lockdown, declining positive predictive values require independent dual-target confirmation for reliable assessment. Confirmatory and quantitative follow-up testing should be obtained within <5 days and consider lower respiratory fluids in symptomatic patients with SARS-CoV-2-negative NOPS.


Subject(s)
COVID-19/epidemiology , Communicable Disease Control/methods , SARS-CoV-2/isolation & purification , Adult , Bronchoalveolar Lavage , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , COVID-19 Testing , Disease Transmission, Infectious/prevention & control , Female , Genome, Viral , Humans , Male , Middle Aged , Nasopharynx/virology , Oropharynx/virology , Pandemics , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Switzerland/epidemiology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL